R. ROSSETTI and P. L. STANGHELLINI

Istituto di Chimica Generale ed Inorganica, Università di Torino, Corso Massimo d'Azeglio 48, 10125 Torino, Italy Received February 11, 1975

The mass spectra of several bis(nickel cyclopentadienyl)acetylene complexes $(Cp_2Ni_2RC_2R')$ are discussed. The major processes of decomposition of the parent ions can be satisfactorily described in terms of: a) loss of the alkyne ligand; b) loss of a cyclopentadiene molecule; c) loss of a NiCp fragment; d) fragmentation of the R groups. The effect of the R and R' groups is taken into account to explain the different breakdown pathways.

Introduction

The application of mass spectroscopy to the problems of structure and bonding in organometallic compounds has been widely developed in the last few years. Several reviews on this field have recently appeared¹.

As a part of a study on the reactivity of the acetylenic derivatives of metal carbonyls, this paper describes the fragmentation pattern of some $Cp_2Ni_2RC_2R'$ complexes, whose structure has been already determined²:

In this series only the mass spectrum of $Cp_2Ni_2HC_2$ CF₃ has been reported³. By comparison, a detailed spectrum of $Cp_2Ni_2(CO)_2$ is also described: its major features have previously appeared⁴.

We have recently reported the interesting features of the reactivity and of the IR and NMR spectroscopic properties of the above compounds, regarding the nature of the R and R' groups⁵.

So it is possible to make a complete comparison with the analogous cobalt complexes of general formula $Co_2(CO)_6RC_2R'$ which exhibit an alkyne depending behaviour on the CO⁶ and acetylene⁷ substitution reaction, IR⁸ and mass⁹ spectroscopic properties.

Results and Discussion

$Cp_2Ni_2(CO)_2(I)$

The main peaks are similar to those previously reported⁴. The different intensities are probably due to the different values of the ionizing energy.

As expected according to the very different lability of the CO and of the π -cyclopentadienyl group¹, the parent ion simply loses the two CO's to give the very intense ion Ni₂Cp₂⁺ (246). It decomposes by loss either of a cyclopentadiene molecule to give Ni₂C₅H₄⁺ (180) or of a nickel atom, giving NiCp₂⁺ (188) as the base peak. Other ions containing two nickel atoms are Ni₂C₁₀H₈⁺ (121), Ni₂C₃H₂⁺ (154), Ni₂C₂H⁺ (141), all presumably derived from the intense Ni₂Cp₂⁺ and Ni₂C₅H₄⁺ by loss of an hydrogen molecule or of hydrocarbon fragments.

NiCp₂⁺ shows a decomposition pattern very similar to that of nickelocene¹⁰ giving NiC₁₀H₈⁺ (186), NiCp⁺ (123), NiC₃H₃⁺ (97), Ni⁺ (58), C₅H₅⁺ (65), C₃H₃⁺ (39) as the most prominent ions.

Detailed data on the spectrum are given in Table I.

$Cp_2Ni_2C_2(CH_3)_2$ (II)

From the data reported in Table I it can be observed that this spectrum shows very similar features to those of the spectrum of (I). This is due to the fact that the parent ion decomposes only by loss of the alkyne ligand, to give $Ni_2Cp_2^+$ and, successively, $NiCp_2^+$ and $NiCp^+$. Their fragmentations, similar to those reported in (I), give the other ions in the spectrum.

$Cp_2Ni_2C_2H_2$ (III) and $Cp_2Ni_2HC_2CH_3$ (IV)

Two different paths appear to be competitive in the decomposition of both parent ions: the loss of the acetylene and the loss of a cyclopentadiene fragment to give $Ni_2CpC_2H^+$ (206) and $Ni_2CpC_2CH_3^+$ (220), respectively. The absence of these ions in the spectrum of (I) confirms that they are not produced by fragmentation of $Ni_2Cp_2^+$. Furthermore, both paths are supported by the presence of the relevant metastable peaks (see Table II).

The simple elimination of C_sH_s radical is not observed: the driving force of this decomposition seems to be the great stability of the cyclopentadiene molecule, formed presumably by abstraction of an hydrogen atom from the alkync.

The fragmentation of $Ni_2Cp_2^+$, $NiCp_2^+$ and $NiCp^+$ give rise to the same pattern as with (I) and (II).

An interesting difference is the remarkable intensities of $Ni_2C_2H^+$ (141) in the spectrum of (III) and of $Ni_2C_3H_3^+$ (155) in the spectrum of (IV). These ions

TABLE I. Mass Spectra of $Cp_2Ni_2RC_2R'$ Complexes.

m/e	Ion	Relative Intensity								
		I	II	III	IV	v	VI	VII	VIII	IX
424	$Ni_2Cp_2C_2(C_6H_5)_2^+$							37		
408	$Ni_2Cp_2C_2(CF_3)_2^+$					8				
389	$Ni_2Cp_2C_4F_5^+$					4				
388	$Ni_2Cp_2C_2(COOCH_3)_2^+$						32			
362	Ni ₂ Cp ₂ CH ₃ C ₂ C ₆ H ₅ ⁺								28	
360	$Ni_2Cp_2C_2OCH_3(COOCH_3)^+$						1			
357	$Ni_2Cp_2C_2CO(COOCH_3)^+$						1			
348	Ni ₂ Cp ₂ HC ₂ C ₆ H ₅ ⁺									39
330	Ni ₂ Cp ₂ HC ₂ COOCH ₃ ⁺						3			
329	Ni ₂ Cp ₂ C ₂ COOCH ₃ ⁺						2			
302	$Ni_2Cp_2(CO)_2^+$	12								
301	$NiCpC_2(C_6H_5)_2^+$		•					4		
300	$Ni_2Cp_2C_2(CH_3)_2^+$		20							
286	$N_{1_2}Cp_2HC_2CH_3^{+}$				19					
285	N1CpC₄F ₆ ⁺					3				•
282	$N_{12}CpC_2C_6H_5^+$									3
274	N ₁₂ Cp ₂ CO ⁺	4								
272	$N_{12}Cp_2C_2H_2^{+}$			35			4			
271	N ₁₂ Cp ₂ C ₂ H ⁺						1			
270	$N_{12}Cp_2C_2^+$					-	3			
266	NICpC ₄ F ₅ ⁺					5	2			
265	$N_1CpC_2(COOCH_3)_2$ or $N_1_2Cp_2F^+$					9	3			
204	$N_{12}C_9H_8O_2$	40	16	15		27	0	100	77	70
246	$N_{12}Cp_2$	48	46	65	44	27	90	100	//	/0
245	$N_{12}C_{10}H_9$			4		•	3	2	2	2
244	$N_{12}C_{10}H_8$	4		2		2	4	3	3	2
239	$C_{19}H_{11}$							4	4	
226	$NiCpC_2CH_3C_6H_5$							5	4	
230	$NiC_{14}H_{10}$							5		2
224	$N_{C} U +$									3
223	$NiC_{13}H_9$				2					3
220	$N_1^2 C p C_2 C H_3$			1	3	1	1	2	1	
219	$N_2 C_8 \Pi_7$	1		1	2	1	1	2	1	
210	$N_{12}C_{8}H_{6}$	1		1	3	1	1	1	1	0
217	$N_{12}C_{8}H_{5}$							1	3	9
215	$N_{12}C_{8}\Pi_{3}$						2	3		
207	$N_1C_9 \Pi_9 O_2^+$ $N_1C_9 C_1 U^+$			10			10			
200	$N_1 C + E^+$			10		1	10			
188	$N_{12}C_{5}\Pi_{5}\Gamma$	100	100	100	100	1 96	100	00	100	61
186	NiC H +	100	100	100	100	4	100	30	100	5
181	$N_1 C H^+$	2	2	3	4	-4	4	5	4	5
180	Ni ₂ C ₅ H ₅	2	5	14	-4	3	8	2	3	1
178	$C_1 H_2^+$	3	5	14	/	3	0	50	2	3
177	$C_{14}H_{10}^{+}$							5	2	
176	$C_{14}H_{9}^{+}$							10		
175	NiC ₂ H ₂ O ⁺						3	10		
173	NiC _o H _o ⁺	2					5		8	
172	NiC _o H _c ⁺	2							3	
169	CoH4Fo ⁺					4			5	
165	CroHo ⁺					-		5	3	0
162	NiC.H.+		3					5	5	,
160	NiC _e H _c ⁺	2	2							
155	Ni ₂ C ₂ H ₂ ⁺	2	7		13	2			2	
154	Ni ₂ C ₂ H ₂ ⁺	5	ò	5	12	4	3		5	2
153	Ni ₂ C ₂ H ⁺	2	3	3	6	-	3		2	1
152	$C_{12}H_{12}^{+}$ or $C_{0}H_{12}O_{2}^{+}$	-		5	0	2		8	-	-

Mass Spectra of Nickel Complexes

TAI	BLE	I. (Cont.)
-----	-----	------	-------	---

Relative Intensity

m/e	Ion	Relative Intensity									
		I	п	III	IV	v	VI	VII	VIII	IX	
151	$C_{12}H_7^+$ or $C_9H_{11}O_2^+$						1	6			
	NiC ₃ F ₃					4					
150	$C_{12}H_6^+$, $C_9H_4F_2^+$ or $C_9H_{10}O_2^+$					1	3	3			
149	C ₉ H ₉ O ₂ ⁺						6				
148	$C_9H_8O_2^+$						8				
147	$C_9 H_7 O_2^+$					4	10				
144	$C_8 \Pi_3 \Gamma_3$					4					
142	$C_4 I_5$ $C_2 H_2 F_2^+$					7					
141	$C_{11}H_{0}^{+}$							3			
	$Ni_2C_2H^+$	7	17	40	27	6	18	5	9	7	
139	$C_{11}H_7^+$ or $C_8H_5F_2^+$					3		4			
136	NiC ₆ H ₆ ⁺	1	4		9						
134	NiC ₆ H ₄ ⁺							3			
132	$NiC_{3}F_{2}^{+}$					7					
130	$C_{10}H_{10}^+$	5		1		2	1	2		21	
129	$C_{10}H_9^{-1}$	9	6	3	6	3	2	3		32	
128	$N_{12}CH^+$	7	2	2	5	3	2	Δ		19	
120	$C_{10} \pi_8$	2		5	0	3	2	4		9	
127	N_{10}^{-117}	2	3				4			-	
123	NiCo ⁺	45	100	37	83	100	56	45	70	27	
122	C _e H ₇ F ⁺					4					
121	NiC ₅ H ₃ ⁺	2				2	2				
120	$C_8H_5F^+$ or $C_8H_8O^+$					5	2				
117	C ₉ H ₉ ⁺								3		
	Ni ₂ H ⁺		3		3		1				
116	$C_9H_8^+$	-			_		•		19		
	Ni ₂ ⁺	2	4		7		2	2	2	1	
115	$C_9H_7^+$	6	10					3	54	23	
112	$N_1C_4H_6'$		10				7				
104	$C_{2}H_{4}^{+}$		5				'	2		7	
103	$C_{e}H_{a}^{+}$							-		21	
102	C _e H _e ⁺	1						2		100	
101	$C_8H_5^+$					3				8	
100	$C_8H_4^+$									8	
98	$C_8H_2^+$									8	
	NiC ₃ H ₄ ⁺			_	6			-			
97	NiC ₃ H ₃ ⁺	10	29	8	26	20	8	5	8	4	
96	$NiC_3H_2^+$ or NiF_2^+	5	12	6	16	8	4	2	4	2	
95	NiC ₃ H ⁺	2	3	2	4	2	1		5	3	
91	$C_7 H_7$						11	6	7	3	
87	$C_7 \Pi_5$						11	1		. 4	
85	$C_7 \Pi_3$ NiC-H- ⁺		3					•			
84	C_2H_3		5			3					
0.	NiC ₂ H ₂ ⁺	2	6								
78	$C_6H_6^+$	1						3		14	
77	C ₆ H ₅ ⁺	1	2					3		9	
76	C ₆ H ₄ ⁺		1					8		86	
75	$C_{6}H_{3}^{+}$							3		22	
74	$C_{6}H_{2}^{+}$							3		51	
73	C ₆ H ⁺					2				3	
69	CF_3^+	0	4	17	6	3	4	6	4	20	
65	$C_{5}\Pi_{6}$	7	4	10	8	7	4	5	5	25	
05	C5115	/	0	10	0	,		5	5		

152

TABLE I. (Cont.)

m/e	Ion	Relati	Relative Intensity									
		I	11	III	IV	v	VI	VII	VIII	IX		
64	C₅H₄ ⁺								1	5		
63	$C_{5}H_{3}^{+}$	3	3	4	7	3	2	4	6	23		
62	$C_5H_2^+$	1		2					3	12		
61	$C_{5}H^{+}$									8		
58	Ni ⁺	15	62	20	56	31	17	20	34	15		
54	$C_4H_6^+$		4									
53	$C_4H_5^+$		6					1				
52	$C_4H_4^+$				4			1		19		
51	$C_4H_3^+$	1	6					4	3	37		
50	$C_4H_2^+$	1	7		4			3	2	38		
41	$C_3H_5^+$ or C_2HO^+	3					I	7		6		
40	$C_3H_4^+$	3		5	9		2	2		7		
39	C ₃ H ₃ ⁺	10	32	14	40	16	10	8	8	30		
38	$C_{3}H_{2}^{+}$	2	6	3	10		1			8		
37	C_3H^+			2	8					6		

TABLE II. Metastable Ions.

Complex	Observed (m/c)	Calculated (m/e)	Process
I	144	143.7	$Ni_2Cp_2^+ \rightarrow NiCp_2^+ + Ni$
	80.5	80.5	$NiCp_2^+ \rightarrow NiCp^+ + Cp^-$
	76.5	76.5	$NiCp^+ \rightarrow NiC_3H_3^+ + C_2H_2$
11	144	143.7	$Ni_2Cp_2^+ \rightarrow NiCp_2^+ + Ni$
	81	80.5	$NiCp_2^+ \rightarrow NiCp^+ + Cp^-$
III	222.5	222.5	$M^+ \rightarrow Ni_2Cp_2^+ + C_2H_2$
	156.5	156.0	$M^+ \rightarrow Ni_2CpC_2H^+ + C_5H_6$
	144	143.7	$Ni_2Cp_2^+ \rightarrow NiCp_2^+ + Ni$
	80.5	80.5	$NiCp_2^+ \rightarrow NiCp^+ + Cp^-$
	76.5	76.5	$NiCp^+ \rightarrow NiC_3H_3^+ + C_2H_2$
IV	211	211.6	$M^+ \rightarrow Ni_2Cp_2^+ + C_2H_4$
	144	143.7	$Ni_2Cp_2^+ \rightarrow NiCp_2^+ + Ni$
	81	80.5	$NiCp_2^+ \rightarrow NiCp^+ + Cp$
v	370	370.9	$M^+ \rightarrow Ni_2Cp_2C_4F_5^+ + F_1^-$
	148	148.3	$M^+ \rightarrow Ni_2Cp_2^+ + C_4F_6$
	80.5	80.5	$NiCp_2^+ \rightarrow NiCp^+ + Cp^-$
	76.5	76.5	$NiCp^+ \rightarrow NiC_3H_3^+ + C_2H_2$
	27.5	27.3	$NiCp^+ \rightarrow Ni^+ + Cp^-$
VI	335	334.0	$M^+ \rightarrow Ni_2Cp_2C_2OCH_3(COOCH_3)^+ + CO$
	281	280.7	$M^+ \rightarrow Ni_2Cp_2C_2HCOOCH_3^+ + COOCH_2^+$
	144	143.7	$Ni_2Cp_2^+ \rightarrow NiCp_2^+ + Ni$
VII	144	143.7	$Ni_2Cp_2^+ \rightarrow NiCp_2^+ + Ni$
	76.5	76.5	$NiCp^+ \rightarrow NiC_3H_3^+ + C_2H_2$
	27.5	27.3	$NiCp^+ \rightarrow Ni^+ + Cp$
VIII	167.5	167.2	$M^+ \rightarrow Ni_2Cp_2^+ + C_0H_g$
	144	143.7	$Ni_2Cp_2^+ \rightarrow NiCp_2^+ + Ni$
IX	28	27.3	$NiCp^+ \rightarrow Ni^+ + Cp$

can be considered in part as fragments of $Ni_2Cp_2^+$, but mainly as the products of the $C_5H_5 \cdot$ ejection from $Ni_2CpC_2H^+$ and $Ni_2CpC_2CH_3^+$ respectively, which are typical ions of these spectra.

$Cp_2Ni_2C_2(CF_3)_2(V)$

The parent ion shows primarily the usual loss of the alkyne. It can also lose successively $F \cdot$ and $NiCp \cdot$, or $NiCp \cdot$ and $F \cdot$ in reverse order, or CpNiF in a sole step, giving rise to $Ni_2Cp_2C_4F_5^+$ (389), $NiCpC_4F_6^+$ (285) and $NiCpC_4F_5^+$ (266).

The spectrum exhibits also other nickel-fluorine ions (e.g. $Ni_2Cp_2F^+$ (265), NiF_2^+ (96) etc.), probably due to the migration of F on Ni, as usual feature of fluoro-organometallic compounds. A large number of fluoro hydrocarbon ions is present (e.g. $C_9H_4F_3^+$ (169), $C_8H_3F_3^+$ (144), $C_8H_5F^+$ (120) etc.). They appear to be the result of a condensation of the alkyne on the Cp ligand during the fragmentation; the nickel-containing ions as (285) and (266) could present such condensed structure.

$Cp_2Ni_2C_2(COOCH_3)_2$ (VI)

The main path of the decomposition of the parent ion is the dissociation of the acetylene moiety to give the very strong ion $Ni_2Cp_2^+$. This ion follows probably the same breakdown pattern reported in the previous spectra, giving rise in particular to NiCp₂⁺, NiCp⁺, $Ni_2C_5H_4^+$, $NiC_3H_3^+$ etc. Minor paths regard the fragmentation on the ester groups of the alkyne ligand. This breakdown was reported in some detail in the case of $Fe_2(CO)_6C_4(COOCH_3)_4^{11}$ and $Co_3(CO)_9$ CCOOCH₃⁹ and implies the ejection of a CO molecule, with migration of a methoxyl group, and the elimination of OCH₂ or of COOCH₂ with the transfer of an hydrogen atom. In this way probably weak ions as Ni₂Cp₂C₂OCH₃(COOCH₃)⁺ (360), Ni₂Cp₂C₂CO (COOCH₃)⁺ (357), Ni₂Cp₂C₂HCOOCH₃⁺ (330), Ni₂ $Cp_2C_2H_2^+$ (272) are obtained.

The spectrum shows many other examples of this kind of fragmentation. The mass of several ions differs from that of others by 28, 30, 31, 57, 58, indicating losses of CO, OCH₂, OCH₃, COOCH₂ and COOCH₃ respectively.

The parent ion can lose also the CpNi \cdot radical giving CpNiC₂(COOCH₃)₂⁺ (265), but not a cyclopentadiene molecule: this probably requires an hydrogen atom on the acetylene moiety as observed in the spectra of (III) and (IV). This condition presumably is satisfied by the (330) and (272) ions because of the hydrogen transfer: so the following transition could probably occur;

$$\begin{array}{c} Cp_2Ni_2C_2HCOOCH_3^+ \xrightarrow{-C_5H_6} CpNi_2C_2COOCH_3^+\\ (m/e\ 330) & (m/e\ 264) \end{array}$$

$$\begin{array}{c} Cp_2Ni_2C_2H_2^+ \xrightarrow{-C_5H_6} CpNi_2C_2H^+ \xrightarrow{-C_5H_6} C_2Ni_2^+ \\ (m/e\ 272) & (m/e\ 206) & (m/e\ 140) \end{array}$$

 $Cp_2Ni_2C_2(C_6H_5)_2$ (VII), $Cp_2Ni_2CH_3C_2C_6H_5$ (VIII) and $Cp_2Ni_2HC_2C_6H_5$ (IX)

The great stability of the acetylenic ligands characterizes these spectra. It is suggested by the large intensities of the relevant alkyne ions and of other organic fragments, most of which are probably originated from the condensation process between the alkyne and the cyclopentadienyl group. (VII) and (VIII) show also the (alkyne)Ni⁺, which can derive directly from the parent ion by loss of a NiCp₂ molecule.

In all three cases, of course, the main decomposition path of the parent ion is the elimination of the alkyne; minor paths are in (VII) and (VIII) the ejection of an NiCp \cdot radical and in (IX) the loss of C₅H₆ and NiC₅H₆. This confirms that the presence of an acetylenic hydrogen is in part responsible for the fragmentation pathways of the parent ion.

The fragmentation of the parent ions in the Cp_2Ni_2 RC₂R' complexes could be rationalised in terms of different pathways, as shown in the following scheme:

Scheme 1

They can be described as: a) loss of the alkyne; b) loss of a cyclopentadiene molecule; c) dissociation of NiC_5H_5 and/or NiC_5H_6 fragments; d) fragmentation of the R and R' groups. In many cases the appearance of the relevant metastable ions supports these mechanisms.

Path (a) is the most important, as confirmed by the intensity of the $Ni_2Cp_2^+$ ion, which is one of the most prominent in the spectra. All the compounds follow this mechanism, which agrees with their chemical reactivity, as reported elsewhere⁵. In effect the possibility to substitute the acetylenic ligand is comparable with the facility to dissociate the same ligand in the ionizing process.

The other mechanisms are much less important than the previous one. Path (b) is followed only by (III), (IV) and (IX). As discussed previously the presence of an acetylenic hydrogen is required to dissociate Cp as cyclopentadiene molecule, but it is not sufficient: *e.g.*, Cp₂Ni₂HC₂CF₃ is reported³ to follow the mechanisms (a) and (c) but not (b). The remaining compounds, *i.e.* (V), (VI), (VII), (VIII) together with (IX) show the pathway (c) (in the case of (V) the fragment lost is CpNiF instead of C₅H₆Ni). This behaviour can be tentatively rationalised in terms of the electron attracting power of the R and R' groups: the complexes with the less electronegative groups, like H and CH₃, lose preferably the cyclopentadiene fragment, whereas with the most electron attracting groups (C_6H_5 , COOCH₃, CF₃) cyclopentadienylmetal is the lost fragment. The results are of course inadequate to draw some definite conclusions, nevertheless it is noteworthy that the decomposition of the parent ions of this series of complexes depends in some way on the properties of the R and R' groups, as occurs with regard to their chemical reactivity⁵.

Experimental Part

The preparations of the complexes have been described⁵.

Mass spectra were obtained with an Hitachi RMU 6H single focusing mass spectrometer, using an ionizing energy of 75ev. Samples were introduced via a direct inlet system.

References

- M.I. Bruce, Advan. Organometal. Chem., 6, 273 (1968).
 M. Cais and M.S. Lupin, Advan. Organometal. Chem., 8, 211 (1970).
 J. Muller, Angew. Chem. Int. Ed., 11, 653 (1972).
- 2 O.S. Mills and B.W. Shaw, J. Organometal. Chem., 11, 595 (1968).
- 3 M.I. Bruce, Org. Mass. Spectrom., 1, 687 (1968).
- 4 E. Schumacher and R. Taubenest, *Helv. Chim. Acta, 49,* 1447 (1966).
- 5 E.W. Randall, E. Rosenberg, L. Milone, R. Rossetti and P.L. Stanghellini, J. Organometal. Chem., 64, 271 (1974).
- 6 G. Cetini, O. Gambino, P.L. Stanghellini and R. Rossetti, Accad. Naz. dei XL (IV), 18 (1967).
- 7 G. Cetini, O. Gambino, R. Rossetti and E. Sappa, J. Organometal. Chem., 8, 149 (1967).
- 8 G. Cetini, O. Gambino, P. L. Stanghellini and G. A. Vaglio, Inorg. Chem., 6, 1225 (1967).
- 9 O. Gambino, G.A. Vaglio, R.P. Ferrari, M. Valle and G. Cetini, Org. Mass Spectrom., 6, 723 (1972).
- 10 J. Muller and L. D'Or, J. Organometal. Chem., 10, 313 (1967).
- 11 O. Gambino, G.A. Vaglio and G. Cetini, Org. Mass Spectrom., 6, 1297 (1972).